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Equivalence transformations and approximate solutions of
a nonlinear heat conduction model
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Received 14 April 1998, in final form 9 September 1998

Abstract. We propose a method of finding approximate solutions associated with nonlinear
partial differential equations involving a small parameter by using equivalence transformations.
As an application of our method we consider a one-dimensional nonlinear heat conduction model
and study its approximate solutions.

1. Introduction

In recent years considerable progress has been made in finding particular solutions of
nonlinear partial differential equations (PDEs) which arise in several branches of physics,
mathematics, engineering and biology through Lie group analysis [1–7]. Recently several
new approaches have been proposed. In particular, some techniques have been developed
to find approximate solutions.

Quite often the nonlinear PDEs depend on some small parameters and in the classical
Lie group analysis these parameters have been treated as constants. However, to study
such evolutionary equations with small parameters an interesting new concept, approximate
transformation groups, has been developed by Baikovet al (see e.g. [5, 8] and references
therein) in order to find approximately invariant solutions.

The main motivation of this paper is to generate approximate solutions of a given
nonlinear PDE involving a small parameter not in the framework of approximate symmetries
but through exact equivalence transformation groups. The starting point of our procedure
is an example given by Baikovet al to illustrate the use of equivalence transformations for
constructing approximately invariant solutions (see [5, vol 3, p 61]). As an application
we consider a one-dimensional hyperbolic heat conduction model introduced in [9, 10]
and successively studied in [11, 12]. We consider a class of systems parametrized by
the relaxation time,z, and find a group of equivalence transformations of this class of
systems whose Lie algebra is an infinite-dimensional algebra. By using the invariance
surface condition related to the equivalence transformations we reduce the system under
consideration to a new system of PDEs (hereafter we call it RS) where the new independent
variables are similarity variables of the equivalence transformations. Under suitable
hypothesis, by expanding the dependent variables of RS in series, we find some approximate
solutions.
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We wish to stress that this approach is, of course, different from other approximate
analysis introduced by Fushchych and Shtelen [13] and subsequently developed by Euler
et al [14]. In fact, in the framework of the theory proposed by Fushchych and Shtelen, an
approximate symmetry of ordern for an assigned equation is defined as an exact symmetry
of the approximate system obtained by expanding the field variable with respect to the
small parameter, truncating the series of ordern, and equating to zero the coefficients of
the powers of the small parameter. Consequently, they found exact solutions of the reduced
system which corresponds to approximate solutions of the original equation.

The plan of this paper is as follows. In section 2 we present a short sketch of a
mathematical model for heat conduction. In section 3 we briefly discuss the Lie symmetries
of the Fourier model and hyperbolic model for heat conduction. In section 4 we find
equivalence transformations associated with the heat conduction model. In section 5
we describe the method of constructing approximate solutions from the equivalence
transformations. In this section classes of approximate solutions found are as in section 6.
Conclusions are presented in section 7.

2. Short sketch of a mathematical model for heat conduction

The following equation has been proposed [9, 10] to describe the heat conduction in a
homogeneous isotropic rigid body:

zqt + (1− zL′L−1Tt )q + L5 T = 0. (2.1)

In the above equation,T , q, z represent the absolute temperature, heat flux and a positive
relaxation constant, respectively; subscripts denote partial differentiation with respect to the
variable t , and a prime denotes the derivative with respect toT . We denoteL = L(T )

the thermal conductivity. Equation (2.1) removes the well known paradox of infinite speed
of heat propagation and is a generalization of the Cattaneo–Maxwell equation introduced
in their well known works [15–17]. Equation (2.1) gives the Fourier laws and Cattaneo’s
equation forz = 0 andL = constant, respectively, as subcases.

From the extended thermodynamics (ET) (see e.g [18–20]) point of view one can
consider equation (2.1) as a field equation which is associated, as usual, with the following
energy conservation equation:

et +5 · q = 0 (2.2)

where it is assumed, in agreement with ET, thate = e(q, T ). It is also possible to verify
the thermodynamic compatibility of the model described by equations (2.1) and (2.2) for
heat propagation in the framework of ET.

In fact, in [11, 12], starting from [9, 10], after observing that equation (2.1) can be
written in a conservative form, we found that there exists a supplementary conservation law
of the form

ht +5 · J = r (2.3)

with h = h(q2, T ) and J = J(q, T ) which, by requiringr > 0, is equivalent to a
generalized form of the entropy inequality [18–20].
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The procedure used in [11] gives the following characterization of the functional form
of e, h andJ :

e = e0(T )+ z

2L

(
2

T
− L

′

L

)
q2

h = h0(T )+ z

2LT

(
1

T
− L

′

L

)
q2

J = q

T

(2.4)

wheree0(T ) is the internal energy at equilibrium andh′0 = C/T (C := e′0(T ), the positive
specific heat at equilibrium). Moreover, the request thatr > 0 implies, as expected,L > 0.
Furthermore, it is shown in [11] that it is possible to write the system (2.1) and (2.2) as a
symmetric quasilinear hyperbolic system [21, 22] so that a general theorem of well-posedness
of the Cauchy problem holds [23].

Finally, it is worth mentioning that in [19, 20], the interested reader can find not only
theoretical arguments for models of heat-wave propagation based on the Maxwell–Cattaneo
model equation but also find a vast literature for experimental backing for these models.

So taking into account equation (2.4) the governing system for heat propagation can be
written as

zqt + (1− zL′L−1Tt )q + L5 T = 0(
C + z

2
A′q2

)
Tt + zAq · qt +5 · q = 0

(2.5)

where

A := 1

L

(
2

T
− L

′

L

)
. (2.6)

In this paper we restrict ourselves to the unidimensional case and assumeL = L0T
2 and

C = C̄T 3. For this form ofL(T ), A vanishes and our system reads

Tx − 2zq

L0T 3
Tt + z

L0T 2
qt + 1

L0T 2
q = 0

qx + C̄T 3Tt = 0.
(2.7)

This can also be obtained as a special case for a rigid heat conductor model introduced in
[24].

For further developments we rewrite the system (2.7) in nondimensional form by
introducing the variables

x̂ = x

x̄
t̂ = t

t̄
û = T

T̄0
v̂ = qx̄

L0T̄
3

0

ẑ = z

t̄
(2.8)

wheret̄ , x̄, T̄ are characteristic time, length and temperature. Ift̄ represents a macroscopic
timescale: z � t̄ then ẑ � 1. So our system, after dropping the hat and putting it in
evolutionary form, reads

zvt − 2zv

u
ut + u2ux + v = 0

ut + 1

Ĉu3
vx = 0

(2.9)

where we put

Ĉ = C̄T̄0x̄
2

L0t̄
. (2.10)
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It is a simple matter to see that whenz = 0, system (2.9) becomes

u2ux + v = 0

ut + 1

Ĉu3
vx = 0

(2.11)

which fall in the case of a Fourier conduction model which is reducible to the following
nonlinear diffusion equation

ut = 1

Ĉu3
(u2ux)x. (2.12)

Hereafter, for the sake of simplicity, we call system (2.9) aperturbed systemand (2.12) an
unperturbed system.

3. Lie symmetries of the unperturbed and perturbed systems

Before going on to study the equivalence transformations of the perturbed nonlinear heat
conduction model, equation (2.9), we briefly review the Lie symmetries of the unpertubed
system (2.11).

Applying the classical Lie algorithm [1–7] to equation (2.11), we get the following
infinitesimal components for the generator0 of the systems (2.11) by using the software
package of [25]:

ξ1 = (−3a1+ a2)x + a3 ξ2 = (2a2− 7a1)t − a4 φ1 = −a1u φ2 = −a2v

(3.1)

where ξ1, ξ2, φ1, and φ2 are the infinitesimal components corresponding to the variables
x, t, u andv anda1, a2, a3 anda4 are arbitrary constants.

The basis of the associated Lie algebraL4 is

01 = ∂

∂x
02 = ∂

∂t
03 = −3x

∂

∂x
− 7t

∂

∂t
− u ∂

∂u

04 = x ∂
∂x
+ 2t

∂

∂t
− v ∂

∂v
.

(3.2)

It is a simple matter, by specializing the results obtained in [26], to obtain the following
symmetries for the perturbed system:

X1 = ∂

∂x
X2 = ∂

∂t
X3 = x ∂

∂x
− 2u

∂

∂u
− 7v

∂

∂v
. (3.3)

Moreover we can verify that

X3 = 203+ 704. (3.4)

Therefore, the three-dimensional algebraL3 = 01⊕02⊕(203+704) is astablesubalgebra,
in the sense of [5], of the unperturbed system.

4. Equivalence transformations

Let us consider a system of PDEs. An equivalence transformation is a transformation
which changes the system into another system, having the same differential structure, but
with a different form of coefficients. Quite often the equivalence transformations can be
found for the systems when the constitutive elements are arbitrary functions. The search of
continuous equivalence transformations can be done either through direct approach or by
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Lie’s infinitesimal criterion orginally suggested by Ovsiannikov [3]. Even though the direct
approach, in principle, gives the complete group transformation, it involves very lengthy
calculations and so quite often one uses Lie’s infinitesimal criterion to find the equivalence
transformations. The main advantage of this is that it offers a practical way to find the
equivalence transformations even though it does not give the largest group of equivalence
transformations [27, 28].

As far as our system is concerned, even though it does not contain any arbitrary function,
it involves a numerical parameterz characterizing the type of conductor. When we consider
different types of conductors the value ofz changes, so we can treatz as a parameter
describing the class of systems having the form (2.9). An equivalence transformation
for the system (2.9) changes the original equation into a new equation having the same
differential structure with a different value of the parameter. In other words, the equivalence
transformation changes the functionz = z1 ≡ constant into another functionz = z2 ≡
constant, in general withz1 6= z2. If z1 = z2, then the equivalence transformation is a
symmetry transformation of the system (2.9). However, it is easy to verify that one can bring
out this kind of equivalence transformation from Lie’s infinitesimal criterion itself by treating
the parameter as a new independent variable so that the field variables will be considered as

u = u(t, x, z)
v = v(t, x, z). (4.1)

To carry out our investigations let us rewrite equation (2.9) in the following form:

ut + vx

Ĉu3
= 0

zvt + u2ux + 2zv

Ĉu4
vx + v = 0.

(4.2)

The invariance of the equation (4.2) under the following local one-parameter Lie group
of infinitesimal point transformations,

x∗ = x + εξ1(t, x, z) (4.3a)

t∗ = t + εξ2(t, x, z) (4.3b)

z∗ = z+ εξ3(t, x, z, u, v) (4.3c)

u∗ = u+ εφ1(t, x, z, u, v) (4.3d)

v∗ = v + εφ2(t, x, z, u, v) (4.3e)

leads to the following determining equations

ξ3u = ξ3v = ξ3x = ξ3t = 0 (4.4a)
z

Ĉu3
φ2u − u2φ1v + 1

Ĉu
ξ2x − zξ1t = 0 (4.4b)

z

Ĉu3
φ2x + v

Ĉu3
ξ2x − vφ1v + zφ1t = 0 (4.4c)

2v

Ĉu4
ξ2x − 2v

u
φ1v + φ2v − φ1u + ξ2t − ξ1x − 3

u
φ1 = 0 (4.4d)

2zv

Ĉu2
ξ2x + zu2ξ2t − zu2ξ1x + zu2φ1u + 2z2v

Ĉu4
φ2u − zu2φ2v − u2ξ3+ 2zuφ1 = 0 (4.4e)

4zv2

Ĉ2u8
ξ2x − 2zv

Ĉu4
ξ1x + 1

Ĉu
ξ2x + 2zv

Ĉu4
ξ2t + u2φ1v − z

Ĉu3
φ2u − 8zv

Ĉu5
φ1− zξ1t + 2z

Ĉu4
φ2 = 0

(4.4f)
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2zv2

Ĉu4
ξ2x + zvξ2t + zu2φ1x + 2z2v

Ĉu4
φ2x − zvφ2v + z2φ2t − vξ3+ zφ2 = 0. (4.4g)

Solving equation (4.4a–g) consistently we obtain the following solution:

ξ1 = z(a1(z)x + a2(z)) ξ2 = a3(z)t + za4(z) ξ3 = za3(z)

φ1 = (−2za1(z)+ a3(z))u φ2 = (3a3(z)− 7za1(z))v
(4.5)

wherea1, a2, a3 anda4 are arbitrary functions ofz.
The associated vector field can be written as

Y = z(a1(z)x + a2(z))
∂

∂x
+ (a3(z)t + za4(z))

∂

∂t
+ za3(z)

∂

∂z
+ (−2za1(z)+ a3(z))u

∂

∂u

+(3a3(z)− 7za1(z))v
∂

∂v
. (4.6)

From Y we can get equivalence generatorsprojectable in the space(t, x, u, v) by
specializing the arbitrary functions as follows:

a1(z) = µ1

z
a2(z) = µ2

z
a3(z) = µ3 a4(z) = µ4

z
(4.7)

whereµ1, µ2, µ3 andµ4 are arbitrary constants. Therefore, the equivalence projectable
generatorYP is of the form

YP = (µ1x + µ2)
∂

∂x
+ (µ3t + µ4)

∂

∂t
+ µ3z

∂

∂z
+ (µ3− 2µ1)u

∂

∂u
+ (3µ3− 7µ1)v

∂

∂v
.

(4.8)

By projecting this generator into the space(t, x, u, v) we can easily check that it coincides
with the four-dimensional Lie algebra spanned by symmetries of the unperturbed system.

5. Approximate solutions

In this section we show how to find approximate solutions for system (4.2) from the
equivalence transformations (4.5).

The invariance surface condition associated with the projectable generator,YP , (4.8)
can be written as

(µ1x + µ2)
∂u

∂x
+ (µ3t + µ4)

∂u

∂t
+ µ3z

∂u

∂z
= (µ3− 2µ1)u (5.1a)

(µ1x + µ2)
∂v

∂x
+ (µ3t + µ4)

∂v

∂t
+ µ3z

∂v

∂z
= (3µ3− 7µ1)v. (5.1b)

The general solution of the above equations, (5.1), can be found by solving the characteristic
equation

dx

(µ1x + µ2)
= dt

(µ3t + µ4)
= dz

µ3z
= du

(µ3− 2µ1)u
= dv

(3µ3− 7µ1)v
. (5.2)

In the caseµ1, µ3 6= 0 (we will discuss the caseµ1, µ3 = 0 separately in the next section)
we get,

u = ψ(σ, η)(µ3t + µ4)
(µ3−2µ1)

µ3 v = χ(σ, η)(µ3t + µ4)
(3µ3−7µ1)

µ3 (5.3a)

and

σ = (µ1x + µ2)
µ3

(µ3t + µ4)µ1
η = z

(µ3t + µ4)
. (5.3b)
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By substituting (5.3) in (4.2) we get a reduced system (RS) of PDEs inψ andχ , where the
independent variables are nowσ andη, of the form

µ1µ3σ
∂ψ

∂σ
+ µ3η

∂ψ

∂η
− µ1µ3

Ĉψ3
σ

µ3−1
µ3
∂χ

∂σ
− (µ3− 2µ1)ψ = 0

µ1µ3ση
∂χ

∂σ
+ µ3η

2∂χ

∂η
− µ1µ3ψ

2σ
µ3−1
µ3
∂ψ

∂σ
− 2ηµ1µ3χ

Ĉψ4
σ

µ3−1
µ3
∂χ

∂σ

−(1+ η(3µ3− 7µ1))χ = 0.

(5.4)

Once observed thatη is (at least) locally of the same order ofz and assuming thatψ and
χ are analytic functions of its arguments, it is possible to expand them in series so that we
can write

ψ = ψ0(σ )+ ηψ1(σ )+ η2ψ2(σ )+ · · ·
χ = χ0(σ )+ ηχ1(σ )+ η2χ2(σ )+ · · · .

(5.5)

By truncating (5.5) at ordern, substituting them in the RS, neglecting the higher powers
of η and by equating the coefficients of various powers ofηi, i = 0, . . . , n, to zero in both
equations we get a system of 2n+2 ordinary differential equations (ODEs) in the unknowns
ψ0, . . . , ψn, χ0, . . . , χn, with the independent variableσ . In this system only the subsystem
of equations in the unknownsψ0 andχ0 is nonlinear and it is decoupled from the other 2n

equations. It is easy to check that this subsystem is the reduced system of the unperturbed
system by means of the projection ofYP to the space of(t, x, u, v). Once this nonlinear
system is solved, that is, once we have found an invariant solution of the unpertubed system,
the remaining equations can be reduced to a linear form which, in general, can be solved
easily.

By substituting equation (5.5) in (5.4) with the first-order approximation inη, we get

µ1µ3σ(ψ
3
0 + 3ηψ2

0ψ1)(ψ
′
0+ ηψ ′1)+ µ3η(ψ

3
0 + 3ηψ2

0ψ1)ψ1

−µ1µ3

Ĉ
σ

(µ3−1)
µ3 (χ0

′ + ηχ ′1)− (µ3− 2µ1)(ψ
4
0 + 4ηψ3

0ψ1) = 0

µ1µ3ση(ψ
4
0 + 4ηψ3

0ψ1)(χ
′
0+ ηχ ′1)−

2ηµ1µ3

Ĉ
σ

(µ3−1)
µ3 (χ0+ ηχ1)(χ0

′ + ηχ ′1)

−µ1µ3(ψ
6
0 + 6ηψ5

0ψ1)σ
(µ3−1)
µ3 (ψ0

′ + ηψ ′1)+ µ3η
2(ψ4

0 + 4ηψ4
0ψ1)χ1

−(1+ η(3µ3− 7µ1))(χ0+ ηχ1)(ψ
4
0 + 4ηψ3

0ψ1) = 0

(5.6)

where the prime denotes differentiation with respect toσ . Equating the coefficients of
ηi, i = 0, 1 to zero and neglecting the higher powers ofη we get

µ1µ3σψ
3
0ψ
′
0−

µ1µ3

Ĉ
σ

µ3−1
µ3 χ ′0− (µ3− 2µ1)ψ

4
0 = 0 (5.7a)

µ1µ3σ
µ3−1
µ3 ψ2

0ψ
′
0+ χ0 = 0 (5.7b)

µ1µ3σψ
3
0ψ
′
1+ 3µ1µ3σψ

2
0ψ1ψ

′
0−

µ1µ3

Ĉ
σ

µ3−1
µ3 χ ′1+ (8µ1− 3µ3)ψ

3
0ψ1 = 0 (5.7c)

µ1µ3σ
µ3−1
µ3 ψ6

0ψ
′
1− µ1µ3σψ

4
0χ
′
0+ 6µ1µ3σ

µ3−1
µ3 ψ5

0ψ1ψ
′
0+

2µ1µ3

Ĉ
σ

(µ3−1)
µ3 χ ′0χ0

+ψ4
0χ1+ (3µ3− 7µ1)ψ

4
0χ0+ 4ψ3

0ψ1χ0 = 0. (5.7d)

From equations (5.7a, b) we get a particular solution of the form

ψ0 = 14µ2
1

Ĉµ3σ (2/µ3)
(5.8)
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χ0 = 5488µ7
1

Ĉ3µ3
3σ

(7/µ3)
. (5.9)

Substituting equations (5.8) and (5.9) in (5.7c) and (5.7d) and simplifying we get the
following linear differential equations forψ1, χ1:

2744µ6
1

Ĉ2µ2
3σ

(6/µ3)−1
ψ ′1− µ3σ

(µ3−1)
µ3 χ ′1−

2744(3µ3− 2µ1)µ
5
1

Ĉ2µ3
3σ

(6/µ3)
ψ1 = 0 (5.10)

196µ5
1

Ĉ2µ3σ (5/µ3)−1
ψ ′1−

784µ5
1

Ĉ2µ2
3σ

(5/µ3)
ψ1+ χ1+ 5488µ7

1

Ĉ3µ2
3σ

(7/µ3)
= 0. (5.11)

Solving equations (5.10) and (5.11), we get

ψ1 = I1

σ (2/µ3)
+ I2

σ

(14µ1−11µ3)

µ2
3

+ 196µ2
1

Ĉ(14µ1− 13µ3)σ (2/µ3)
logσ (5.12)

χ1 = 10 976(3µ3− 7µ1)µ
7
1

Ĉ3µ2
3(14µ1− 13µ3)σ (7/µ3)

+ 1176µ5
1I1

Ĉ2µ2
3σ

(7/µ3)
+ 1372µ5

1(2µ1− µ3)I2

Ĉ2µ3
3σ

(6µ3−14µ1)

µ2
3

+ 230 496µ7
1

Ĉ3µ2
3(14µ1− 13µ3)σ (7/µ3)

logσ (5.13)

whereI1, I2 are integration constants. Substituting equations (5.8), (5.9), (5.12) and (5.13)
in (5.5), we get

ψ ≈ 14µ2
1

Ĉµ3σ (2/µ3)
+ η

[
I1

σ (2/µ3)
+ I2

σ

(14µ1−11µ3)

µ2
3

+ 196µ2
1 logσ

Ĉ(14µ1− 13µ3)σ (2/µ3)

]
(5.14)

χ ≈ 5488µ7
1

Ĉ3µ2
3σ

(7/µ3)
+ η

[
10 976(3µ3− 7µ1)µ

7
1

Ĉ3µ2
3(14µ1− 13µ3)σ (7/µ3)

+ 1176µ5
1I1

Ĉ2µ2
3σ

(7/µ3)

+ 1372µ5
1(2µ1− µ3)I2

Ĉ2µ3
3σ

(6µ3−14µ1)

µ2
3

+ 230 496µ7
1 logσ

Ĉ3µ2
3(14µ1− 13µ3)σ (7/µ3)

 . (5.15)

Rewriting in terms of old variables equations (5.14) and (5.15) become

u ≈ 14µ2
1(µ3t + µ4)

Ĉµ3(µ1x + µ2)2
+ z

[
I1

(µ1x + µ2)2
+ I2(µ3t + µ4)

µ1(14µ1−13µ3)

µ2
3

(µ1x + µ2)
(14µ1−11µ3)

µ3

+ 196µ2
1

Ĉ(14µ1− 13µ3)(µ1x + µ2)2
log

(
(µ1x + µ2)

µ3

(µ3t + µ4)µ1

)]
(5.16)

v ≈ 5488µ7
1(µ3t + µ4)

3

Ĉ3µ3
3(µ1x + µ2)7

+ z
[

10 976(3µ3− 7µ1)µ
7
1(µ3t + µ4)

2

Ĉ3µ2
3(14µ1− 13µ3)(µ1x + µ2)7

+1176µ5
1I1(µ3t + µ4)

2

Ĉ2µ2
3(µ1x + µ2)7

+ 1372µ5
1(2µ1− µ3)I2(µ1x + µ2)

(6µ3−14µ1)

µ2
3

Ĉ2µ3
3(µ3t + µ4)

(13µ1µ3−14µ2
1−2µ2

3)

µ2
3

+ 230 496µ7
1(µ3t + µ4)

2

Ĉ3µ2
3(14µ1− 13µ3)(µ1x + µ2)7

log

(
(µ1x + µ2)

µ3

(µ3t + µ4)µ1

)]
. (5.17)
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We wish to mention that by using the projectable generator we have obtained in such a
way that only one of the new variables,σ or η, depends on the small parameterz (in our
caseη) and, moreover, thatη is an infinitesimal of the same order inz.

Taking into account the above remarks in what follows we give a formal procedure
(summarized in three steps) to obtain approximate solutions for anm×m system of PDE’s
involving two independent variables and a small parameter,z, of the form

Hi(t, x, z, uj , u
j
t , u

j
x, . . .) = 0 i, j = 1, . . . , m. (5.18)

(1) First choose an appropriate equivalence generator (for instance, a projectable
equivalence generator) and reducing the above systemHi to an RS of equations

Ki(σ, η, χj , χjσ , χ
j
η , . . .) = 0 i, j = 1, . . . , m (5.19)

such that only one of the variablesσ or η depends onz (in the following we assumeη).
(2) Expandχj , iff η is an infinitesimal of order greater than or the same as z, in series

with respect toη, such that

χj = χj0 (σ )+ ηχj1 (σ )+ η2χ
j

2 (σ )+ · · · j = 1, . . . , m. (5.20)

(3) Truncate (5.20) at ordern and substitute in the RS (5.19). By equating the various
powers ofηi, i = 0, . . . , n to zero we get a system of ODEs with the independent variable
σ . As shown earlier, only the subsystem (m equations) of zeroth-order equations, that is
the system in the unknownsχjo ’s, is nonlinear and it is decoupled from the otherm × n
equations. Once a particular solution associated with the nonlinear system of equations is
found then the remaining equations can be reduced to a linear form which can also be solved
(in principle). Substituting all the explicit forms ofχj ’s in equation (5.20) and rewriting in
terms of old variables one can get an approximate solution for the PDE (5.18).

6. The caseµ1 = µ3 = 0

In this case, we get the following similarity variables

σ = x − (µ2/µ4)t η = z (6.1)

and

u = ψ(σ, η) v = χ(σ, η). (6.2)

As described in the previous section, substituting equations (6.1) and (6.2) in
equation (4.2) with the first-order approximation ofη and equating the coefficients of
ηi, i = 0, 1 to zero in the resultant equation, by neglecting the higher powers ofη, we
get

µ2

µ4
ψ3

0ψ
′
0−

χ ′0
Ĉ
= 0 (6.3a)

ψ2
0ψ
′
0+ χ0 = 0 (6.3b)

3µ2

µ4
ψ2

0ψ1ψ
′
0+

µ2

µ4
ψ3

0ψ
′
1−

χ ′1
Ĉ
= 0 (6.3c)

ψ6
0ψ
′
1+ 6ψ5

0ψ1ψ
′
0+

2

Ĉ
χ0χ

′
0−

µ2

µ4
ψ4

0χ
′
0+ ψ4

0χ1+ 4ψ3
0ψ1χ0 = 0. (6.3d)

An interesting feature of this case is that one can easily verify that the unperturbed part,
equations (6.3a,b), admits a trivial solution

ψ0 = constant= A0 χ0 = 0. (6.4)
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In other words we getu = constant= A0 andv = 0 which is the well known equilibrium
solution for this problem. However, this solution cannot be obtained from the case
considered in the previous section. In this case by solving equations (6.3c, d), we get

χ1 = I1A
2
0 exp

[
−µ2ĈA0σ

µ4

]
(6.5)

ψ1 = µ4I1

µ2A0Ĉ
exp

[
−µ2ĈA0σ

µ4

]
+ I2 (6.6)

whereI1 andI2 are integration constants, so that one can write an approximate solution of
the form

u ≈ A0+ z
[
µ4I1

µ2A0Ĉ
exp

[
−µ2ĈA0σ

µ4

]
+ I2

]
(6.7)

v ≈ z
[
I1A

2
0 exp

[
−µ2ĈA0σ

µ4

]]
. (6.8)

However, one can also find a more general approximate solution of equation (6.3) by
following the steps given in case 1, which turn out to be

ψ0 = 4µ4

µ2(Ĉσ + I1)
(6.9a)

χ0 = 64Ĉµ3
4

µ3
2(Ĉσ + I1)4

(6.9b)

ψ1 = I2(Ĉσ + I1)
3+ I3

(Ĉσ + I1)2
− 8Ĉ

(Ĉσ + I1)2
log(Ĉσ + I1) (6.9c)

χ1 = −16I2Ĉµ
2
4

µ2
2

+ 64I3Ĉµ
2
4

µ2
2(Ĉσ + I1)5

− 512µ2
4Ĉ

2

µ2
2(Ĉσ + I1)5

log(Ĉσ + I1) (6.9d)

whereI1, I2 andI3 are integration constants. Substituting equation (6.8) in (6.2), one obtains
an approximate solution of the form

u ≈ 4µ4

µ2(Ĉ(x − µ2

µ4
t)+ I1)

+ z
[
I2

(
Ĉ

(
x − µ2

µ4
t

)
+ I1

)3

+ I3

(Ĉ(x − µ2

µ4
t)+ I1)2

−
8Ĉ log(Ĉ(x − µ2

µ4
t)+ I1)

(Ĉ(x − µ2

µ4
t)+ I1)2

]
(6.10)

v ≈ 64Ĉµ3
4

µ3
2(Ĉ(x − µ2

µ4
t)+ I1)4

+ zµ
2
4

µ2
2

[
−16I2Ĉ + 64I3Ĉ

(Ĉ(x − µ2

µ4
t)+ I1)5

−
512Ĉ2 log(Ĉ(x − µ2

µ4
t)+ I1)

(Ĉ(x − µ2

µ4
t)+ I1)5

]
. (6.11)

7. Conclusions

In this paper we have shown that one can deduce approximate solutions for systems
depending on a small parameter through the equivalence transformations. We have



Nonlinear heat conduction 10015

utilized the equivalence transformations, which have previously been studied for differential
equations, where its constitutive elements are arbitrary functions, for the differential
equations containing a small parameter.

In order to illustrate our method for a physical example we have considered a hyperbolic
model for heat conduction containing an arbitrary parameter representing the relaxation time
of the conductor and obtained approximate solutions.

The procedure we used is based essentially on a change of variables induced from
equivalence transformations, which change the system under consideration into another
system of PDEs, the so-called RS, with different dependent and independent variables.
From the RS one can construct approximate solutions by appropriately expanding the new
dependent variables and solving the approximate system. One can, in principle, obtain
approximate solutions for other physical models involving a small parameter by following
the procedure given in section 5. This method is straightforward and involves only minor
calculations compared with other methods based on approximate transformation group
analysis.
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