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Abstract. We propose a method of finding approximate solutions associated with nonlinear

partial differential equations involving a small parameter by using equivalence transformations.
As an application of our method we consider a one-dimensional nonlinear heat conduction model
and study its approximate solutions.

1. Introduction

In recent years considerable progress has been made in finding particular solutions of
nonlinear partial differential equations (PDEs) which arise in several branches of physics,
mathematics, engineering and biology through Lie group analysis [1-7]. Recently several
new approaches have been proposed. In particular, some techniques have been developed
to find approximate solutions.

Quite often the nonlinear PDEs depend on some small parameters and in the classical
Lie group analysis these parameters have been treated as constants. However, to study
such evolutionary equations with small parameters an interesting new concept, approximate
transformation groups, has been developed by Baioal (see e.g. [5, 8] and references
therein) in order to find approximately invariant solutions.

The main motivation of this paper is to generate approximate solutions of a given
nonlinear PDE involving a small parameter not in the framework of approximate symmetries
but through exact equivalence transformation groups. The starting point of our procedure
is an example given by Baikost al to illustrate the use of equivalence transformations for
constructing approximately invariant solutions (see [5, vol 3, p 61]). As an application
we consider a one-dimensional hyperbolic heat conduction model introduced in [9, 10]
and successively studied in [11,12]. We consider a class of systems parametrized by
the relaxation timez, and find a group of equivalence transformations of this class of
systems whose Lie algebra is an infinite-dimensional algebra. By using the invariance
surface condition related to the equivalence transformations we reduce the system under
consideration to a new system of PDEs (hereafter we call it RS) where the new independent
variables are similarity variables of the equivalence transformations. Under suitable
hypothesis, by expanding the dependent variables of RS in series, we find some approximate
solutions.

1 Also at: Centre for Nonlinear Dynamics, Department of Physics, Bharathidasan University, Tiruchirapalli-620
024, India.
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We wish to stress that this approach is, of course, different from other approximate
analysis introduced by Fushchych and Shtelen [13] and subsequently developed by Euler
et al [14]. In fact, in the framework of the theory proposed by Fushchych and Shtelen, an
approximate symmetry of orderfor an assigned equation is defined as an exact symmetry
of the approximate system obtained by expanding the field variable with respect to the
small parameter, truncating the series of ordeand equating to zero the coefficients of
the powers of the small parameter. Consequently, they found exact solutions of the reduced
system which corresponds to approximate solutions of the original equation.

The plan of this paper is as follows. In section 2 we present a short sketch of a
mathematical model for heat conduction. In section 3 we briefly discuss the Lie symmetries
of the Fourier model and hyperbolic model for heat conduction. In section 4 we find
equivalence transformations associated with the heat conduction model. In section 5
we describe the method of constructing approximate solutions from the equivalence
transformations. In this section classes of approximate solutions found are as in section 6.
Conclusions are presented in section 7.

2. Short sketch of a mathematical model for heat conduction

The following equation has been proposed [9,10] to describe the heat conduction in a
homogeneous isotropic rigid body:

¢+ A—zL'LT)q+ Ly T=0. (2.1)

In the above equatior, g, z represent the absolute temperature, heat flux and a positive
relaxation constant, respectively; subscripts denote partial differentiation with respect to the
variablet, and a prime denotes the derivative with respecftoWe denoteL = L(T)
the thermal conductivity. Equation (2.1) removes the well known paradox of infinite speed
of heat propagation and is a generalization of the Cattaneo—Maxwell equation introduced
in their well known works [15-17]. Equation (2.1) gives the Fourier laws and Cattaneo’s
equation forz = 0 and L = constant, respectively, as subcases.

From the extended thermodynamics (ET) (see e.g [18-20]) point of view one can
consider equation (2.1) as a field equation which is associated, as usual, with the following
energy conservation equation:

e+v-q=0 (2.2)

where it is assumed, in agreement with ET, that e(q, T). It is also possible to verify
the thermodynamic compatibility of the model described by equations (2.1) and (2.2) for
heat propagation in the framework of ET.

In fact, in [11,12], starting from [9, 10], after observing that equation (2.1) can be
written in a conservative form, we found that there exists a supplementary conservation law
of the form

h+v-J=r (23)

with h = h(q?, T) and J = J(q, T) which, by requiringr > 0, is equivalent to a
generalized form of the entropy inequality [18—20].
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The procedure used in [11] gives the following characterization of the functional form
of e, h and J:

z 2 L\,
— T
¢=eo(l) 2L ( )q

T L
Z 1 L'\ ,
h=ho(T)+ — = — = (2.4)
0()+2LT(T L)q
Jg=2
T

whereeo(T) is the internal energy at equilibrium akg = C/T (C = ey(T), the positive
specific heat at equilibrium). Moreover, the request that0 implies, as expected, > 0.
Furthermore, it is shown in [11] that it is possible to write the system (2.1) and (2.2) as a
symmetric quasilinear hyperbolic system [21, 22] so that a general theorem of well-posedness
of the Cauchy problem holds [23].

Finally, it is worth mentioning that in [19, 20], the interested reader can find not only
theoretical arguments for models of heat-wave propagation based on the Maxwell-Cattaneo
model equation but also find a vast literature for experimental backing for these models.

So taking into account equation (2.4) the governing system for heat propagation can be
written as

2q+Q—zL'L'T)q+LvyT=0

, (2.5)
(C+§qu)Tt+qu-qz+v-q=0
where
1/(2 LU
A==(=-=2). (2.6)
L\T L

In this paper we restrict ourselves to the unidimensional case and adsumeoT? and
C = CT?3. For this form of L(T), A vanishes and our system reads

2zq z
T, — T; =0

LoT? r t+ LoTzqt + LOTZq @2.7)
g« + CT3T, = 0.

This can also be obtained as a special case for a rigid heat conductor model introduced in
[24].
For further developments we rewrite the system (2.7) in nondimensional form by

introducing the variables
N X N
X = = =
X

T R gx
— V= ——5
To LoT¢
wherer, x, T are characteristic time, length and temperature. réfpresents a macroscopic
timescale: z « 7 thenZ « 1. So our system, after dropping the hat and putting it in
evolutionary form, reads

5= (2.8)

~ ~
<>
I

~j| N

2zv 5
v — —u; +u‘u, +v=0
u

(2.9)
U + —v, = 0
Cud
where we put
CTox?

C =
Lot

(2.10)
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It is a simple matter to see that whenr= 0, system (2.9) becomes

wWu,+v=0
1 (2.11)
u, + —v, =0
Cus
which fall in the case of a Fourier conduction model which is reducible to the following
nonlinear diffusion equation

1 2
u, = a3 WUy (2.12)
Hereafter, for the sake of simplicity, we call system (2.9eaturbed systenand (2.12) an
unperturbed system

3. Lie symmetries of the unperturbed and perturbed systems

Before going on to study the equivalence transformations of the perturbed nonlinear heat
conduction model, equation (2.9), we briefly review the Lie symmetries of the unpertubed
system (2.11).

Applying the classical Lie algorithm [1-7] to equation (2.11), we get the following
infinitesimal components for the generaforof the systems (2.11) by using the software
package of [25]:

&1 =(=3a1+ax)x + a3 & = (2a2 — Ta)t —ay ¢1 = —aiu ¢2 = —axv
3.1)

where &1, &, ¢1, and ¢, are the infinitesimal components corresponding to the variables
x,t,u andv anday, az, az anday are arbitrary constants.
The basis of the associated Lie algelirais
d 0 d d
MN3=-3%x——7t— —u—
0x

a
rh=— r

0x - at
Iy= 9 + 2t 9 v 9
T T T Ve
It is a simple matter, by specializing the results obtained in [26], to obtain the following

symmetries for the perturbed system:

a a a a a
X1=— X, =— Xg=x— —2u— —Tv—. 3.3
S 2= b T T M o 33
Moreover we can verify that
X3 =23+ 7T4. (34)

Therefore, the three-dimensional algelira= I'1 ® T ® (2I'3+ 7T4) is astablesubalgebra,
in the sense of [5], of the unperturbed system.

4. Equivalence transformations

Let us consider a system of PDEs. An equivalence transformation is a transformation
which changes the system into another system, having the same differential structure, but
with a different form of coefficients. Quite often the equivalence transformations can be
found for the systems when the constitutive elements are arbitrary functions. The search of
continuous equivalence transformations can be done either through direct approach or by
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Lie’s infinitesimal criterion orginally suggested by Ovsiannikov [3]. Even though the direct
approach, in principle, gives the complete group transformation, it involves very lengthy
calculations and so quite often one uses Lie’s infinitesimal criterion to find the equivalence
transformations. The main advantage of this is that it offers a practical way to find the
equivalence transformations even though it does not give the largest group of equivalence
transformations [27, 28].

As far as our system is concerned, even though it does not contain any arbitrary function,
it involves a numerical parametercharacterizing the type of conductor. When we consider
different types of conductors the value pfchanges, so we can treatas a parameter
describing the class of systems having the form (2.9). An equivalence transformation
for the system (2.9) changes the original equation into a new equation having the same
differential structure with a different value of the parameter. In other words, the equivalence
transformation changes the functiean= z; = constant into another function = z, =
constant, in general with; # z,. If z; = z», then the equivalence transformation is a
symmetry transformation of the system (2.9). However, it is easy to verify that one can bring
out this kind of equivalence transformation from Lie’s infinitesimal criterion itself by treating
the parameter as a new independent variable so that the field variables will be considered as

u=u(t,x,z)

v=u(t,x,2). (4.1)

To carry out our investigations let us rewrite equation (2.9) in the following form:

u; + ,\vxs = 0
o 4.2)
2 4
v +uu, + —v, +v=0.
Cu?
The invariance of the equation (4.2) under the following local one-parameter Lie group

of infinitesimal point transformations,

'x* =X + E%‘l(ta X, Z) (4'$)
1 =t + ek, x,2) (4.30)
=74 ekt x,z,u,0) (4.3c)
u* =u-+epi(t,x,z,u,v) (4.3d)
Vi =vteda(l, x, 2, U, v) (4.3)
leads to the following determining equations
§3, =83, =83, =863, =0 (4.49)
- ’42¢1v + = —z61, =0 (4.4)
ézx — vy, + 201 = (4.4)
2v 3
+ o0 — P1 +Ex — b1 — ;d’l =0 (4.4)
M
2 2 2z% 2 2
— U glx + zu ¢lu + é_¢2u —Iu ¢2u —u %-3 + 21M¢1 =0 (449)
4702 2zv z
b — — &+ %“2: + ulpr, — == — ¢1 —zé, + g ¢>2
C2u8 Cu? Cu3

(4.40)
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27v? 5 27%v 2
~——&or + 2062 + zuPre + = Por — VP2 + 27 — VE3 + 2¢2 = 0. (4.49)
Cu* Cu*
Solving equation (44—g) consistently we obtain the following solution:
§1 = z(a1(2)x + az(2)) §2 = az(2)t + zaa(z) &3 = zaz(2)

(4.5)
$1 = (—2za1(2) + as(2)u $2 = (Baz(z) — Tza1(2))v

whereay, az, az anday are arbitrary functions of.
The associated vector field can be written as

Y =z(a1(z)x + az(z))i + (az()t + zaA(Z))3 + zas(Z)i + (=2za1(2) + fls(Z))Mi
0x ot 0z ou

+(3as(z) — 7za1(z))v;—v- (4.6)

From Y we can get equivalence generatgndjectable in the space(s, x, u, v) by
specializing the arbitrary functions as follows:

iz M2 M
a@=" @@="Ta@=u  a@=" (4.7)
where u1, 12, nz and g4 are arbitrary constants. Therefore, the equivalence projectable
generatorYp is of the form
ad ad ad d d
Yp = (u1x + po) — + (uat + pa) — + maz— + (3 — 2upu— + Buz — Tuy)v—.
0x at 9z ou av
(4.8)

By projecting this generator into the spagex, u, v) we can easily check that it coincides
with the four-dimensional Lie algebra spanned by symmetries of the unperturbed system.

5. Approximate solutions

In this section we show how to find approximate solutions for system (4.2) from the
equivalence transformations (4.5).

The invariance surface condition associated with the projectable generato(4.8)
can be written as

u ou ou

(max + p2) — + (uat + pa)— + n3z— = (U3 — 2u1)u (5.19)
ox ot 0z
ov ov ov

(m1x 4+ p2) — + (uat + pa) — + paz— = (Buz — Tu1)v. (5.1b)
0x ot a9z

The general solution of the above equations, (5.1), can be found by solving the characteristic
equation

dx B dr _dz du _ dv (5.2)
(max + p2)  (uat +pa)  paz (u3—2p)u (Buz— Tp)v’ '
In the caseus, 13z # 0 (we will discuss the case;, us = 0 separately in the next section)
we get,

(n3—2p1) Buz—7p11)

u = Yo, n)(uat + pa) v=x(o,m(ust + pa) "’ (5.3)

and
M3
_ (x4 p2)™ n=—° (5.30)
(3t + pa)tr (uat + La)
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By substituting (5.3) in (4.2) we get a reduced system (RS) of PDHs amd x, where the
independent variables are nawandn, of the form

oy Iy _ Mans ns Ix
M1p30 — + U3n — (U3 —2uy =0
do an - Cys’ do
papaon Xt a2 pgye S OV Zikasax e Ox (5.4)
VT g TR gy T A 9o Cyt 3o

—(1+n@us—7u1))x =0.
Once observed that is (at least) locally of the same order pfand assuming that and
x are analytic functions of its arguments, it is possible to expand them in series so that we
can write

¥ = Yo(0) + nY(o) + n*Ya(o) + - -

X = X0(0) +nx1(0) + nxa(0) + - -+
By truncating (5.5) at order, substituting them in the RS, neglecting the higher powers
of n and by equating the coefficients of various powersgof =0, ..., n, to zero in both
equations we get a system of 2 2 ordinary differential equations (ODES) in the unknowns
Yo, -+ » Yy Xos - - - » Xn» With the independent variabte. In this system only the subsystem
of equations in the unknowng, and xo is nonlinear and it is decoupled from the other 2
equations. It is easy to check that this subsystem is the reduced system of the unperturbed
system by means of the projection Bf to the space ofz, x, u, v). Once this nonlinear
system is solved, that is, once we have found an invariant solution of the unpertubed system,
the remaining equations can be reduced to a linear form which, in general, can be solved
easily.

By substituting equation (5.5) in (5.4) with the first-order approximation,iwe get

s (W + 30y (Vo + nvry) + nan(¥g + 3nvgv) v

_Haps s
Y865 (X0 + nx)) — (s — 2u0) (W + dnyrdy) =0

(5.5)

UM1M3 (3~ (5.6)

papson (Vg + Mg (x6 + nx) — o 3 (xo+nx1)(xo +nx1)

(ea-h) / /
—paps(W§ + nygvo w (Yo 4+ ) + wan® (Vg + dnvgv) xa

—(L+ n(Bus — Tu1)) (Xo + nxD) (WG + dnygyn) =0
where the prime denotes differentiation with respectto Equating the coefficients of
n',i =0, 1 to zero and neglecting the higher powers)ofie get

Pans v
HARSTYGYG — — 50 5 X6 — (13 — 2u0)Yg =0 (5.72)
n3—1
Hiso s Ygwg + xo =0 (5. M)
nz-1
Hapso Y + Suapso iy — o " x1+ Bus — 3ua) gy =0 (5.7)
#3-t , n-1 2M1M3 (#3-b
pip3o " Yoy — papso Yo xg + Buapso @ Yoy + o " XpX0
+¥gx1+ Bua — TuD)¥ig xo + 4¥3vaxo = 0. (5.7d)
From equations (547, b) we get a particular solution of the form

14/1%

S e 5.8
CM36 (2/n3) ( )

Yo =
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548&{
éaugga/ua) '

Substituting equations (5.8) and (5.9) in @.and (5.#) and simplifying we get the
following linear differential equations fog1, x1:

27448 | wan | 274435 — 2up)
Y1 — U30 3 xg —

Xo = (5.9)

Y1 =0 (5.10)

C2ulo ©/no-1 C2udo ©/ma)
196u° 784u3 54887
# i—A¢¢1+X1+Ai — (5.11)
o 3= (o 3 o 3
C2uzo B/1a-1 C23o /1) C3u3o /na)
Solving equations (5.10) and (5.11), we get
L I 196u7
Y= + - + = (5.12)
o @/ns) 07(14"1#%““‘3’ C(14uq — 13uz)o @/nra)
= 109763us — Tua) g 1176u3h 1372u3(2u1 — wa)l
C3u3(14u1 — 13uz)0 T/ma — C2po T/ma) @2@0@3;7?1)
23049641
G4y (5.13)

+ ~3,,2 7/13)
C3u5(14uu1 — 13uz)o (7/ks

wherel, I, are integration constants. Substituting equations (5.8), (5.9), (5.12) and (5.13)
in (5.5), we get

14/1,% I Ir 196[L§_ logo
Y i@ @i T @ me T g 2
Cuso'( /13) (o2 —Z C(14H'1 — 13“3)0( /13)

o
54887 10 9763u3 — Ty 117681
" C3u2a i) C3u2(14u1 — 13uz)0 T/m €226 T/na)

(5.14)

5 . 7
L 18728@u —na)l 2304961 logo (5.15)

(613—1417) =
ézuga/guféll C3u5 (141 — 13ug)o 7/m

Rewriting in terms of old variables equations (5.14) and (5.15) become

#1(14#12*13#3)
L~ Yaudust + pra) [ I o(uat +pa) '3

= Ty 11
Cra(pax + (12)? (ax + 12 ) e

4o 196u7 o ((Mlx + Mz)m)}
C (141 — 13u3z) (nax + p2)? (pat + pa)ts
) ~ 5488 (ust + ) [19 97631 — T (uat + pna)
C3u3(pax + p2)’ C3u3(14u1 — 13us) (ax + p2)7

(5.16)

(6113—1419)
11760511 (st + pa)? N 1372u52p1 — pua) Lo(uax + p2) %

C2p3(pax + o)’ A G tid 2l
C?u(uat + 1a) 3

230 496{ (113t + 1a)? o <(IL1X + Mz)’“)
C312(14u1 — 13us) (uax + p2)7 (uat + pa)a ) |

(5.17)
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We wish to mention that by using the projectable generator we have obtained in such a
way that only one of the new variables,or n, depends on the small parametefin our
casen) and, moreover, thaj is an infinitesimal of the same order in

Taking into account the above remarks in what follows we give a formal procedure
(summarized in three steps) to obtain approximate solutions fer amn system of PDE'’s
involving two independent variables and a small parametesf the form

H(t,x,z,u',ul,ul,..)=0 ij=1...,m. (5.18)

(1) First choose an appropriate equivalence generator (for instance, a projectable
equivalence generator) and reducing the above sy#fetn an RS of equations

Ki(o,n,xj,xg,)(,{,...)zO iLj=1...,m (5.19)

such that only one of the variablesor n depends orz (in the following we assume).
(2) Expandy/, iff » is an infinitesimal of order greater than or the same amzseries
with respect top, such that

X' = x{©@) 4+ nxi (@) +n?xi(0) + - ji=1....m. (5.20)

(3) Truncate (5.20) at order and substitute in the RS (5.19). By equating the various
powers ofp’,i =0, ...,n to zero we get a system of ODEs with the independent variable
o. As shown earlier, only the subsystem equations) of zeroth-order equations, that is
the system in the unknowng’s, is nonlinear and it is decoupled from the otherx n
equations. Once a particular solution associated with the nonlinear system of equations is
found then the remaining equations can be reduced to a linear form which can also be solved
(in principle). Substituting all the explicit forms ¢f/’s in equation (5.20) and rewriting in
terms of old variables one can get an approximate solution for the PDE (5.18).

6. The caseu; = u3 =0

In this case, we get the following similarity variables

o =x — (u2/ 1)t n=z (6.1)
and

u=1y(o,n) v=x(o,n). (6.2)

As described in the previous section, substituting equations (6.1) and (6.2) in
equation (4.2) with the first-order approximation pfand equating the coefficients of

n',i = 0,1 to zero in the resultant equation, by neglecting the higher powers ofe
get
H2 3.7 X(/)
P23yl — 20 —0 (6.3)
Ha oo C
V5vo+ x0 =0 (6.3)
3M2 2 ’ Mm2 3., XZI,.
—Yivivo+ —vov1 — 5 =0 6.%
a 0¥1¥o s o¥1 ¢ ( )

/ / 2 / I’L /
WWH£%M%+Emm—i%m+ﬁm+wwumm. (6.3)

An interesting feature of this case is that one can easily verify that the unperturbed part,
equations (6.3,b), admits a trivial solution

Yo = constant= Ag xo=0. (6.4)
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In other words we get = constant= Ay andv = 0 which is the well known equilibrium
solution for this problem. However, this solution cannot be obtained from the case
considered in the previous section. In this case by solving equations §,3ve get

CA
sa = hA2 exp[—u} (6.5)
Ha
1 CAgo
Y = M4 1A exp _ 2L Ao +1 (6.6)
/,L2AOC Ha

wherel; and I, are integration constants, so that one can write an approximate solution of
the form

I CAoo
u~ Ag+z Ha r exp _H2t A0 + I (6.7)
Hn2A0C MHa
CA
VA7 [IlAS exp[—uﬂ ) (6.8)
4

However, one can also find a more general approximate solution of equation (6.3) by
following the steps given in case 1, which turn out to be

4
o= — ot (6.9%)
u2(Co + 1)
64Cu3
Xo = 3A—4 (6.9)
u3(Co + I)*
R I3 R
Y = I(Co + 1)° + — - — log(Co + I) (6.%)
' U Cor 2 (Co+hy? '
—161,C 2 6415C 112 512u2C? R
X1 = 22 Ha 5 hich o S 5 AQ'““ log(Co +1;)  (6.9)
"y us(Co +1)°  ps5(Co + I)°

wherel, I, andI; are integration constants. Substituting equation (6.8) in (6.2), one obtains
an approximate solution of the form

4 R 3 I
u~ — Ha +z 12(C<x—&t>+11>+ — 3
n2(Cx — £20) + 1) 14 (Clx = £20) + 11)?

8C log(C (x — 21) + I)
- g 1 (6.10)
(Cx — 20) + I)?
64C 13 2 . 6415C
N A Pal 16,6 + — :
my(C(x — ﬁl) + 1% My (Cx — ﬁ—jt) + 1p)°
N
B 512C%log(C(x — %t) + 1) . 6.11)
(Cx — 21) + 1)®

7. Conclusions

In this paper we have shown that one can deduce approximate solutions for systems
depending on a small parameter through the equivalence transformations. We have
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utilized the equivalence transformations, which have previously been studied for differential
equations, where its constitutive elements are arbitrary functions, for the differential
equations containing a small parameter.

In order to illustrate our method for a physical example we have considered a hyperbolic
model for heat conduction containing an arbitrary parameter representing the relaxation time
of the conductor and obtained approximate solutions.

The procedure we used is based essentially on a change of variables induced from
equivalence transformations, which change the system under consideration into another
system of PDEs, the so-called RS, with different dependent and independent variables.
From the RS one can construct approximate solutions by appropriately expanding the new
dependent variables and solving the approximate system. One can, in principle, obtain
approximate solutions for other physical models involving a small parameter by following
the procedure given in section 5. This method is straightforward and involves only minor
calculations compared with other methods based on approximate transformation group
analysis.
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